37 research outputs found

    SynZEN: a hybrid TTA/VLIW architecture with a distributed register file

    Get PDF
    The quest for higher performance within a certain power budget in the fields of embedded computing demands unconventional architectural approaches. To this end, in this paper we present synZEN (sZ): a (micro-)architecture that combines features of very long instruction word (VLIW) and transport triggered architectures (TTAs) to cover the needs of different applications. SynZEN features a distributed register file (RF) (i.e., each functional unit (FU) has its own RF) and a wide memory connection to exploit spatial data locality. FPGA synthesis results demonstrate that due to the distributed RF the sZ design can be implemented in less area (in terms of FPGA slices) than existing TTA and VLIW designs. Furthermore, using two micro-benchmarks we show that because of the wide memory connection, sZ outperforms both the TTA as well as the VLIW design

    A hybrid transport/control operation triggered architecture

    Get PDF
    We present an approach to a scalable and extensible processor architecture with inherent parallelism named synZEN. One aim was to create a synthesizable application specific processor which can be mapped to an FPGA. Besides architectural features like the interconnection network for flexible data transport and synZEN units with communication managing interface we give an overview of the programming model, show basic operation design and depict assembler notations to program these architecture. The paper closes with a brief toolchain overview and some synthesis results that support our design decisions

    Hydrogenation on palladium nanoparticles supported by graphene nanoplatelets

    Get PDF
    Pd nanoparticles (1 wt %; mean size ∼4 nm) were supported on ∼2 μm sized, but few nanometers thick, graphene nanoplatelets (GNPs) and compared to 1 wt % Pd on activated carbon or γ-alumina. Catalyst morphology, specific surface area, and Pd particle size were characterized by SEM, BET, and TEM, respectively. H2-TPD indicated that GNPs intercalated hydrogen, which may provide additional H2 supply to the Pd nanoparticles during C2H4 hydrogenation. Whereas the two types of Pd/GNPs (NaOH vs calcinated) catalysts were less active than Pd/C and Pd/Al2O3 below 40 °C, at 55 °C they were about 3–4 times more active. As for example Pd/GNPs (NaOH) and Pd/Al2O3 exhibited not too different mean Pd particle size (3.7 vs 2.5 nm, respectively), the higher activity is attributed to the additional hydrogen supply likely by the metal/support interface, as suggested by the varying C2H4 and H2 orders on the different supports. Operando XANES measurements during C2H4 hydrogenation revealed the presence of Pd hydride. The Pd hydride was more stable for Pd/GNPs (NaOH) than for Pd/C, once more pointing to a better hydrogen supply by graphene nanoplatelets

    αv-Class integrin binding to fibronectin is solely mediated by RGD and unaffected by an RGE mutation

    Get PDF
    Fibronectin (FN) is an essential glycoprotein of the extracellular matrix; binds integrins, syndecans, collagens, and growth factors; and is assembled by cells into complex fibrillar networks. The RGD motif in FN facilitates cell binding- and fibrillogenesis through binding to α5β1 and αv-class integrins. However, whether RGD is the sole binding site for αv-class integrins is unclear. Most notably, substituting aspartate with glutamate (RGE) was shown to eliminate integrin binding in vitro, while mouse genetics revealed that FNRGE preserves αv-class integrin binding and fibrillogenesis. To address this conflict, we employed single-cell force spectroscopy, engineered cells, and RGD motif-deficient mice (Fn1ΔRGD/ΔRGD) to search for additional αv-class integrin-binding sites. Our results demonstrate that α5β1 and αv-class integrins solely recognize the FN-RGD motif and that αv-class, but not α5β1, integrins retain FN-RGE binding. Furthermore, Fn1ΔRGD/ΔRGD tissues and cells assemble abnormal and dysfunctional FNΔRGD fibrils in a syndecan-dependent manner. Our data highlight the central role of FN-RGD and the functionality of FN-RGE for αv-class integrins

    Effects of Tax Incentives on Sales of Eco-Friendly Vehicles: Evidence from Japan

    Get PDF
    The recognition of helix-distorting deoxyribonucleic acid (DNA) lesions by the global genome nucleotide excision repair subpathway is performed by the XPC-RAD23-CEN2 complex. Although it has been established that Rad23 homologs are essential to protect XPC from proteasomal degradation, it is unclear whether RAD23 proteins have a direct role in the recognition of DNA damage. In this paper, we show that the association of XPC with ultraviolet-induced lesions was impaired in the absence of RAD23 proteins. Furthermore, we show that RAD23 proteins rapidly dissociated from XPC upon binding to damaged DNA. Our data suggest that RAD23 proteins facilitate lesion recognition by XPC but do not participate in the downstream DNA repair process

    Long-term N-addition alters the community structure of functionally important N-cycling soil microorganisms across global grasslands

    Get PDF
    Anthropogenic nitrogen (N) input is known to alter the soil microbiome, but how N enrichment influences the abundance, alpha-diversity and community structure of N-cycling functional microbial communities in grasslands remains poorly understood. Here, we collected soils from plant communities subjected to up to 9 years of annual N-addition (10 g N m−2 per year using urea as a N-source) and from unfertilized plots (control) in 30 grasslands worldwide spanning a large range of climatic and soil conditions. We focused on three key microbial groups responsible for two essential processes of the global N cycle: N2 fixation (soil diazotrophs) and nitrification (AOA: ammonia-oxidizing archaea and AOB: ammonia-oxidizing bacteria). We targeted soil diazotrophs, AOA and AOB using Illumina MiSeq sequencing and measured the abundance (gene copy numbers) using quantitative PCR. N-addition shifted the structure of the diazotrophic communities, although their alpha-diversity and abundance were not affected. AOA and AOB responded differently to N-addition. The abundance and alpha-diversity of AOB increased, and their community structure shifted with N-addition. In contrast, AOA were not affected by N-addition. AOA abundance outnumbered AOB in control plots under conditions of low N availability, whereas N-addition favoured copiotrophic AOB. Overall, N-addition showed a low impact on soil diazotrophs and AOA while effects for AOB communities were considerable. These results reveal that long-term N-addition has important ecological implications for key microbial groups involved in two critical soil N-cycling processes. Increased AOB abundance and community shifts following N-addition may change soil N-cycling, as larger population sizes may promote higher rates of ammonia oxidation and subsequently increase N loss via gaseous and soil N-leaching. These findings bring us a step closer to predicting the responses and feedbacks of microbial-mediated N-cycling processes to long-term anthropogenic N-addition in grasslands

    Interconnection Optimization for Dataflow Architectures

    Get PDF
    In this paper we present a dataflow processor architecture based on [1], which is driven by controlflow generated tokens. We will show the special properties of this architecture with regard to scalability, extensibility, and parallelism. In this context we outline the application scope and compare our approach with related work. Advantages and disadvantages will be discussed and we suggest solutions to solve the disadvantages. Finally an example of the implementation of this architecture will be given and we have a look at further developments. We believe the features of this basic approach predestines the architecture especially for embedded systems and system on chips

    The Energetic Costs of Uphill Locomotion in Trail Running: Physiological Consequences Due to Uphill Locomotion Pattern—A Feasibility Study

    No full text
    The primary aim of our feasibility reporting was to define physiological differences in trail running (TR) athletes due to different uphill locomotion patterns, uphill running versus uphill walking. In this context, a feasibility analysis of TR athletes’ cardiopulmonary exercise testing (CPET) data, which were obtained in summer 2020 at the accompanying sports medicine performance center, was performed. Fourteen TR athletes (n = 14, male = 10, female = 4, age: 36.8 ± 8.0 years) were evaluated for specific physiological demands by outdoor CPET during a short uphill TR performance. The obtained data of the participating TR athletes were compared for anthropometric data, CPET parameters, such as V˙Emaximum, V˙O2maximum, maximal breath frequency (BFmax) and peak oxygen pulse as well as energetic demands, i.e., the energy cost of running (Cr). All participating TR athletes showed excellent performance data, whereby across both different uphill locomotion strategies, significant differences were solely revealed for V˙Emaximum (p = 0.033) and time to reach mountain peak (p = 0.008). These results provide new insights and might contribute to a comprehensive understanding of cardiorespiratory consequences to short uphill locomotion strategy in TR athletes and might strengthen further scientific research in this field
    corecore